comparison of the dihedral angles between the Co , $\mathrm{N}(3), \mathrm{N}(13), \mathrm{N}(18)$ and $\mathrm{Co}, \mathrm{N}(3), \mathrm{N}(8), \mathrm{N}(13)$ planes and the ring planes [176.8 (3), $92.9(3)^{\circ}$ and $110 \cdot 1$ (3), $164 \cdot 6(3)^{\circ}$ for the $\mathrm{N}(11)-\mathrm{C}(15)$ and $\mathrm{N}(1)-\mathrm{C}(5)$ rings, respectively].
The structure contains a three-dimensional network of hydrogen bonds (Fig. 2) involving $\mathrm{N}^{\tau}-\mathrm{H}$, amino, water and $\mathrm{C}(12)-\mathrm{H}$ groups as donors, and water O atoms, carbonate and Cl^{-}anions as acceptors. The $\mathrm{N}(1)-\mathrm{H}$ group forms a hydrogen bond, the $\mathrm{N}(1) \cdots \mathrm{O}(3)(-x,-y,-1-z)$ distance being 2.755 (4) \AA. The $\mathrm{N}(8)$ amino group is a donor in two hydrogen bonds. With $\mathrm{N}(8) \cdots \mathrm{Cl}(1+x, y, 1+$ z) and $\mathrm{N}(8) \cdots \mathrm{O} W(1+x, y, z)$ distances of 3.318 (4) and $2.922(5) \AA$, respectively. The $\mathrm{N}(11)-\mathrm{H}$ group of the second histamine ligand forms a hydrogen bond to the Cl^{-}ion $[\mathrm{N}(11) \cdots \mathrm{Cl}(1-x, 1-y,-z)=$ $3 \cdot 175$ (4) \AA]. The $\mathrm{C}(12)-\mathrm{H}$ group acts as a donor in a bifurcated hydrogen bond, the $\mathrm{C}(12) \cdots \mathrm{O}(1)$ and $\mathrm{C}(12) \cdots \mathrm{Cl}(1+x, y, z)$ distances being $2 \cdot 838$ (5) and 3.448 (5) \AA, respectively. The $\mathrm{N}(18)$ amino group is a donor in two hydrogen bonds, the $\mathrm{N}(18) \cdots \mathrm{Cl}$ and $\mathrm{N}(18) \cdots \mathrm{O}(3)(x, y, 1+z)$ distances being 3.484 (5) and 2.930 (5) \AA, respectively. Both water O-H groups form hydrogen bonds $[\mathrm{O} W \cdots \mathrm{Cl}=3 \cdot 240(4)$ and $\mathrm{O} W \cdots \mathrm{O}(2)(x, y, 1+z)=2 \cdot 772$ (4) \AA]. The Cl^{-} ion participates in five hydrogen bonds, and the carbonate ion is an acceptor in four such bonds, whereas the water O atom is a single-hydrogen-bond acceptor.

This research was partly supported by project RP.II. 10.

References

Bonnet, J. J. \& Ibers, J. A. (1973). J. Am. Chem. Soc. 95, 4829-4833.
Bonnet, J. J. \& Jeannin, Y. (1970). Acta Cryst. B26, 318-326.
Dahan, F. (1976). Acta Cryst. B32, 2472-2475.
Danilczuk, E. \& Surdykowski, A. (1986). Pol. J. Chem. 60, 379-387.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
IUPAC-IUB Commission on Biochemical Nomenclature (1970). J. Mol. Biol. 52, 1-17.

Jaskólski, M. (1982). In Collected Abstracts of the Fourth Symposium on Organic Crystal Chemistry, Poznań, September 1982, edited by Z. Kaluski, pp. 70-71. A. Mickiewicz Univ., Poznań, Poland.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PlutO78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Niederhoffer, E. C., Martell, A. E., Rudolf, P. \& Clearfield, A. (1982). Inorg. Chem. 21, 3734-3741.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Throup, N. (1977). Acta Chem. Scand. Ser. A, 31, 203-207.
Wojtczak, A., Jaskólski, M. \& Kosturkiewicz, Z. (1983). Acta Cryst. C39, 545-547.
Wojtczak, A., Jaskólski, M. \& Kosturkiewicz, Z. (1985). Acta Cryst. C41, 1752-1755.
Wojtczak, A., Jaskólski, M. \& Kosturkiewicz, Z. (1987). Acta Cryst. C43, 645-648.

Acta Cryst. (1990). C46, 581-584

Structure of trans-Bromodicarbonyl[o-phenylenebis(diphenylphosphine)]((%5Cboldsymbol%7Bp%7D)-tolylmethylidyne)tungsten(0)

By G. A. Carriedo, V. Riera, J. M. Rubio Gonzalez and M. G. Sanchez
Departamento de Química Organometálica, Universidad de Oviedo, 33071 Oviedo, Spain

(Received 23 January 1989; accepted 6 July 1989)

Abstract

WBr}(\mathrm{CO})_{2}\left(\mathrm{C}_{8} \mathrm{H}_{7}\right)\left(\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{P}_{2}\right)\right], M_{r}=869 \cdot 39\), monoclinic, $P 2_{1} / n, a=9.505$ (5), $b=18.333$ (4), $c=$ 20.775 (8) $\AA, \beta=96.68$ (4) ${ }^{\circ}, V=3595$ (3) $\AA^{3}, Z=4$, $D_{x}=1.606 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha$ radiation (graphite monochromator, $\lambda=0.71073 \AA$), $\quad \mu=4.50 \mathrm{~mm}^{-1}$, $F(000)=1704, T=291 \mathrm{~K}$, final $R=0.025$ for 4337 observed reflections and 509 variables. The W atom is in a distorted octahedral environment formed by the two P atoms of the chelating diphosphine, two mutually cis carbonyl groups and a bromide ligand trans to a methylidyne group. The $\mathrm{W} \equiv \mathrm{C}-R$

0108-2701/90/040581-04\$03.00
($R=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-4$) group deviates slightly from linearity and the short W-C distance suggests a formal metal-carbon triple bond.

Introduction. Very few X-ray structure determinations have been carried out on neutral sixcoordinated methylidyne complexes of tungsten(0), and the majority of them are trans-tetracarbonyls, having also halogens (Huttner, Lorenz \& Gartzke, 1974; Neugebauer, Fischer, Dao \& Schubert, 1978; Fischer, Gammel \& Neugebauer, 1980) or the © 1990 International Union of Crystallography
$\mathrm{Co}(\mathrm{CO})_{4}$ group (Fischer, Friedrich, Lindner, Neugebauer, Kreissl, Uedelhoven, Dao \& Huttner, 1983). Here we report the first crystal structure of a stable methylidyne complex of the type trans-$X(\mathrm{CO})_{2}(L-L) \mathrm{W}(\equiv \mathrm{C} R), \quad$ where $\quad X=\mathrm{Br}, \quad L-L=$ o-phenylenebis(diphenylphosphine) and $\quad R=$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$, prepared by Carriedo, Riera \& Sánchez (1988) following a method similar to that published recently for other dicarbonyl methylidyne complexes (McDermott, Dorries \& Mayr, 1987).

Experimental. A crystal was selected and mounted on an Enraf-Nonius CAD-4 four-circle diffractometer. The unit-cell parameters were determined from 23 reflections ($8 \leq \theta \leq 12^{\circ}$) and refined by least-squares method. Intensities were collected, using the $\omega-2 \theta$ scan technique, up to $\theta=30^{\circ}$ in the $h k l$ range from $-13,0,0$ to $13,25,19$. Three reflections were measured each hour as orientation and intensity control; no significant intensity decay was observed. 9194 reflections were measured, corresponding to 8631 unique reflections ($R_{\text {int }}=0.024$), 4337 of which were assumed as observed applying the condition $I \geq$ $3 \sigma(I)$. Lorentz and polarization corrections were applied.

The structure was solved by locating the W and Br atoms with MULTAN80 (Main et al., 1980); the other atoms were found by Fourier synthesis with SHELX76 (Sheldrick, 1976). The structure was refined by block-matrix least squares, using SHELX 76 (Sheldrick, 1976). The function minimized was $\sum\left[w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right], \quad$ where $\quad w=\left[\sigma^{2}\left(F_{o}\right)+\right.$ $\left.0 \cdot 0002\left|F_{o}\right|^{2}\right]^{-1}$. After the isotropic refinement, an empirical absorption correction was applied (Walker \& Stuart, 1983), correction factors were in the range 0.905 to 1.090 . Anisotropic thermal parameters were comparable after refinement with and without absorption correction. Except for those of the methyl group [$\mathrm{C}(10)$, which were located by difference Fourier synthesis, the H atoms were inserted geometrically: All the H atoms were refined freely with an overall isotropic temperature factor (final $U=$ $0 \cdot 107 \AA^{2}$). The remaining atoms were refined with individual anisotropic temperature factors. The final R was 0.025 and $w R$ was 0.024 . Max. shift/e.s.d. was 2.43 for the overall temperature factor of H atoms. For non-H atoms the max. shift/e.s.d. was 1.47 for U_{11} of $\mathrm{C}(33)$. Owing to restrictions in calculation time, in each run of the SHELX program each block was refined only once. The truncation of the results in each run of the program resulted in numerical noise. Finally, successive executions of the program led to no further progress in the refinement. The final difference Fourier map showed a residual electron density between -0.42 and $0.45 \mathrm{e} \AA^{-3}$. The values of f, f^{\prime} and $f^{\prime \prime}$ were taken from International Tables for X-ray Crystallography (1974). The geometry calcula-
tions were performed with PARST (Nardelli, 1983), and Fig. 1 was drawn with PLUTO (Motherwell, 1976).

Discussion. Final atomic parameters are listed in Table 1 and selected bond lengths and angles in Table 2.* The structure consists of discrete molecules (Fig. 1) linked by van der Waals forces. The shortest intermolecular separation is $2 \cdot 480(0) \AA$ $\left[\mathrm{H}(24) \cdots \mathrm{H}\left(34^{\mathrm{i}}\right)\right.$; (i) $\left.=x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}\right]$. The W atom is in a slightly distorted octahedral environment, with two P atoms of the chelating ligand and two carbonyl ligands in the equatorial positions. The Br atom and the methylidyne group are in the apical positions.
The $\operatorname{Br}(1)-W(1)$ bond distance $[2 \cdot 675(1) \AA]$ is very similar to that observed in $\left[\mathrm{Br}(\mathrm{CO})_{4} \mathrm{~W}(\equiv \mathrm{CMe})\right]$ [2.648 (6) \AA] (Neugebauer, Fischer, Dao \& Schubert, 1978). The $\mathrm{W}(1)-\mathrm{C}(3)$ distance $[1.798(5) \AA)]$ may be compared with those found in the related complexes $\quad\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{~W} \equiv \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right]$ [1.82 (2) \AA] (Fischer, Lindner, Huttner, Friedrich, Kreissl \& Besenhard, 1977) and [I(CO) 4 W $\equiv \mathrm{CPh})$] [1.90 (5) \AA] (Huttner, Lorenz \& Gartzke, 1974). In all of these complexes the $\mathrm{W}-\mathrm{C}$ separation is considerably shorter than that observed in $\left[\mathrm{W}\left(=\mathrm{CPh}_{2}\right)(\mathrm{CO})_{s}\right][2 \cdot 14(2) \AA]$ (Casey, Burkhardt, Bunnell \& Calabrese, 1977) and this has been taken to imply a $\mathrm{W}=\mathrm{C}$ bond because it is significantly less than the corresponding distance $[2 \cdot 34$ (1) \AA] in the anion $\left\{\mathrm{W}[\mathrm{CH}(\mathrm{OMe}) \mathrm{Ph}](\mathrm{CO})_{s}\right\}^{-}$(Casey, Polichnowski, Tuinstra, Albin \& Calabrese, 1978). The angles $\mathrm{Br}(1)-\mathrm{W}(1)-\mathrm{C}(3)$ [173.4 (2) ${ }^{\circ}$] and $\mathrm{W}(1)-$ $\mathrm{C}(3)-\mathrm{C}(4)\left[171.5(4)^{\circ}\right]$ deviate slightly from linearity.
The W(1)-CO bond lengths $[2 \cdot 012$ (5) \AA] are shorter than those observed in $\left[\operatorname{Br}(\mathrm{CO})_{4} \mathrm{~W}(\equiv \mathrm{CMe})\right]$ [average value $2 \cdot 12$ (5) \AA] (Neugebauer, Fischer, Dao \& Schubert, 1978). This may be attributed to the presence of a P atom in a trans position to each CO group. The $\mathrm{W}(1)-\mathrm{C}-\mathrm{O}$ groups are almost linear [average value $176 \cdot 8(5)^{\circ}$]. Both $\mathrm{W}(1)-\mathrm{P}$ distances [average value $2 \cdot 513$ (1) \AA] are close to those found in the related complex $\left[\mathrm{W}(\mathrm{CO})_{3}(\mathrm{dppe})\left(\mathrm{C}=\mathrm{CHCO}_{2^{-}}\right.\right.$ Me)] [average value $2 \cdot 550$ (3) \AA] (Birdwhistell, Nieter Burgmayer \& Templeton, 1983). The $\mathrm{Br}(1)-$ $\mathrm{W}(1)-\mathrm{P}$ angles are smaller than the $\operatorname{Br}(1)-$ $\mathrm{W}(1)-\mathrm{CO}$ angles, but all of them are about 90°. Similarly, the C(3)-W(1)-CO angles [average value 87.0 (2) ${ }^{\circ}$] are smaller than those corresponding to the $\mathrm{C}(3)-\mathrm{W}(1)-\mathrm{P}$ angles [average value $\left.98.4(1)^{\circ}\right]$. The angle between the two carbonyl groups is near 90°

[^0]Table 1. Fractional positional and thermal parameters $\left(\AA^{2} \times 10^{2}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	\boldsymbol{x}	y	z	$U_{\text {eq }}$
W(1)	$0 \cdot 49916$ (2)	$0 \cdot 22404$ (1)	0.08264 (1)	4.26 (1)
$\mathrm{Br}(1)$	$0 \cdot 49150$ (6)	$0 \cdot 30205$ (3)	-0.02654 (3)	$6 \cdot 15$ (2)
$\mathrm{P}(1)$	0.3103 (1)	$0 \cdot 30583$ (7)	$0 \cdot 11781$ (6)	4.40 (4)
$\mathrm{P}(2)$	0.2757 (1)	$0 \cdot 16591$ (7)	0.02763 (6)	$4 \cdot 68$ (4)
C(1)	0.6574 (5)	$0 \cdot 2873$ (3)	0.1241 (3)	$5 \cdot 8$ (2)
$\mathrm{O}(1)$	0.7441 (4)	0.3217 (3)	$0 \cdot 1506$ (2)	9.4 (2)
C(2)	0.6319 (5)	0.1559 (3)	0.0436 (3)	6.4 (2)
$\mathrm{O}(2)$	0.7050 (5)	$0 \cdot 1163$ (2)	0.0236 (3)	9.8 (2)
C(3)	0.5256 (4)	0.1702 (3)	0.1554 (2)	5.0 (2)
C(4)	0.5675 (5)	$0 \cdot 1317$ (3)	0.2155 (3)	$5 \cdot 7$ (2)
C(5)	0.7055 (6)	$0 \cdot 1340$ (4)	0.2437 (3)	$9 \cdot 2$ (3)
C(6)	0.7422 (8)	0.0985 (5)	0.3024 (4)	13.5 (4)
C(7)	0.6501 (9)	0.0614 (4)	0.3338 (3)	9.9 (3)
C(8)	0.5181 (8)	0.0576 (4)	0.3051 (4)	11.9 (4)
C(9)	0.4739 (7)	0.0925 (4)	0.2467 (3)	$10 \cdot 5$ (3)
C(10)	0.698 (1)	0.0242 (5)	0.3978 (4)	18.8 (6)
C(21)	0.1490 (4)	0.2957 (3)	0.0608 (2)	4.7 (2)
C(22)	0.1306 (4)	0.2323 (3)	0.0249 (2)	$4 \cdot 8$ (2)
C(23)	0.0026 (5)	0.2200 (3)	-0.0139 (3)	$6 \cdot 4$ (2)
C(24)	-0.1046 (5)	0.2715 (4)	-0.0157 (3)	7.5 (2)
C(25)	-0.0834 (5)	0.3353 (4)	0.0175 (3)	$7 \cdot 8$ (3)
C(26)	0.0428 (5)	0.3481 (3)	0.0563 (3)	$6 \cdot 4$ (2)
C(31)	0.2524 (5)	0.2820 (3)	$0 \cdot 1959$ (2)	4.9 (2)
C(32)	$0 \cdot 1122$ (6)	0.2753 (4)	0.2056 (3)	$8 \cdot 3$ (3)
C(33)	0.0777 (6)	0.2623 (4)	0.2670 (3)	10.0 (3)
C(34)	0.1746 (8)	0.2540 (4)	$0 \cdot 3176$ (3)	$8 \cdot 6$ (3)
C(35)	0.3132 (7)	0.2599 (4)	0.3095 (3)	$9 \cdot 2$ (3)
C(36)	0.3535 (6)	0.2738 (3)	0.2481 (3)	7.0 (2)
C(41)	0.3364 (5)	0.4040 (3)	0.1245 (3)	$5 \cdot 1$ (2)
C(42)	0.3554 (6)	0.4433 (3)	0.0700 (3)	$7 \cdot 3$ (2)
C(43)	$0 \cdot 3740$ (7)	0.5180 (3)	0.0720 (3)	$8 \cdot 2$ (3)
C(44)	0.3765 (7)	0.5546 (3)	0.1285 (4)	$8 \cdot 8$ (3)
C(45)	0.3592 (9)	0.5166 (4)	0.1832 (4)	11-1 (4)
C(46)	0.3381 (8)	0.4410 (3)	0.1812 (3)	9.1 (3)
C(51)	0.2712 (5)	0.1377 (3)	-0.0569 (3)	$5 \cdot 1$ (2)
C(52)	0.2356 (5)	0.1862 (3)	-0.1075 (3)	6.4 (2)
C(53)	0.2382 (6)	0.1649 (4)	-0.1705 (3)	$8 \cdot 2$ (3)
C(54)	0.2777 (7)	0.0949 (5)	-0.1843 (4)	$9 \cdot 5$ (3)
C(55)	0.3183 (7)	0.0473 (4)	-0.1349 (4)	9.0 (3)
C(56)	0.3134 (6)	0.0677 (3)	-0.0717 (3)	7.0 (2)
C(61)	0.2156 (6)	0.0858 (3)	0.0694 (3)	6.0 (2)
C(62)	0.3131 (7)	0.0330 (3)	0.0893 (3)	$8 \cdot 2$ (3)
C(63)	0.2717 (10)	-0.0296 (4)	$0 \cdot 1199$ (4)	$11 \cdot 1$ (4)
C(64)	0.138 (1)	-0.0395 (5)	0.1312 (4)	12.9 (5)
C(65)	0.0433 (9)	0.0133 (6)	$0 \cdot 1139$ (5)	$15 \cdot 1$ (5)
C(66)	0.0801 (7)	0.0766 (4)	0.0821 (4)	$10 \cdot 7$ (3)

Fig. 1. Geometry and crystallographic numbering scheme for the complex $\quad\left\{\right.$ trans $\left.-\mathrm{Br}(\mathrm{CO})_{2}\left[0-\mathrm{Ph}\left(\mathrm{PPh}_{2}\right)_{2}\right] \mathrm{W}(\mathrm{C} \equiv R)\right\} . \quad R=$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$.

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{W}(1)-\mathrm{Br}(1)$	$2 \cdot 675$ (1)	$\mathrm{W}(1)-\mathrm{C}(3)$	1.798 (5)
$W(1)-P(1)$	2.512 (1)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.128 (6)
$W(1)-P(2)$	$2 \cdot 528$ (2)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.449 (7)
$\mathrm{W}(1)-\mathrm{C}(1)$	$2 \cdot 012$ (5)	$\mathrm{P}(1)-\mathrm{C}(21)$	1.834 (4)
		$\mathrm{C}(21)-\mathrm{C}(22)$	1.381 (7)
$\mathrm{C}(3)-\mathrm{W}(1)-\mathrm{C}(2)$	88.0 (2)	$\mathbf{P}(1)-W(1)-P(2)$	78.0 (1)
$\mathrm{C}(3)-\mathrm{W}(1)-\mathrm{C}(1)$	$86 \cdot 1$ (2)	$\mathrm{Br}(1)-\mathrm{W}(1)-\mathrm{C}(3)$	173.4 (2)
$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(2)$	$93 \cdot 3$ (2)	$\mathrm{Br}(1)-\mathrm{W}(1)-\mathrm{C}(2)$	86.9 (1)
$\mathrm{C}(3)-\mathrm{W}(1)-\mathrm{P}(2)$	1002 (2)	$\mathrm{Br}(1)-\mathrm{W}(1)-\mathrm{C}(1)$	89.9 (1)
$\mathrm{C}(2)-\mathrm{W}(1)-\mathrm{P}(2)$	$95 \cdot 1$ (2)	$\mathrm{Br}(1)-\mathrm{W}(1)-\mathrm{P}(2)$	84.4 (1)
$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{P}(2)$	169.6 (2)	$\mathrm{Br}(1)-\mathrm{W}(1)-\mathrm{P}(1)$	88.7 (1)
$\mathrm{C}(3)-\mathrm{W}(1)-\mathrm{P}(1)$	96.8 (2)	$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	176.2 (5)
$P(1)-W(1)-C(2)$	172.2 (2)	$\mathrm{W}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	177.5 (5)
$P(1)-W(1)-C(1)$	93.2 (2)	$\mathrm{W}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	171.5 (4)

[93.3 (2) ${ }^{\circ}$], and considerably greater than that found between the two P atoms of the chelating ligand [78.0(1) ${ }^{\circ}$].

The $\mathrm{W}(1)-\mathrm{P}(2)$ bond makes an angle of $21 \cdot 26(1)^{\circ}$ with the plane formed by $\mathrm{W}(1), \mathrm{P}(1)$ and $\mathrm{C}(21)$. The plane containing the $\mathrm{C}(24), \mathrm{C}(25)$ and $\mathrm{C}(26)$ atoms is almost perpendicular to the p-tolyl ring [dihedral angle $\left.81.44(1)^{\circ}\right]$ and forms a dihedral angle of $16.8(1)^{\circ}$ with the plane formed by the $\mathrm{W}(1), \mathrm{P}(21)$ and $\mathrm{C}(21)$ atoms.

We thank the Spanish CAICYT for financial support and the Spanish Ministerio de Educacion y Ciencia for a fellowship (to MGS).

References

Birdwhistell, K. R., Nieter Burgmayer, S. J. \& Templeton, J. L. (1983). J. Am. Chem. Soc. 105, 7789-7790.

Carriedo, G. A., Riera, J. M. \& Sanchez, M. G. (1988). Unpublished.
Casey, C. P., Burkhardt, T. J., Bunnell, C. A. \& Calabrese, J. C. (1977). J. Am. Chem. Soc. 99, 2127-2134.

Casey, C. P., Polichnowski, S. W., Tuinstra, H. E., Albin, L. D. \& Calabrese, J. C. (1978). Inorg. Chem. 17, 3045-3049.

Fischer, E. O., Friedrich, P., Lindner, T. L., Neugebauer, D., Kreissl, F. R., Uedelhoven, W., Dao, N. Q. \& Huttner, G. (1983). J. Organomet. Chem. 247, 239-246.

Fischer, E. O., Gammel, F. J. \& Neugebauer, D. (1980). Chem. Ber. 113, 1010-1019.
Fischer, E. O., Lindner, T. L., Huttner, G., Friedrich, P., Kreissl, F. R. \& Besenhard J. O. (1977). Chem. Ber. 110, 3397-3404.
Huttner, G., Lorenz, H. \& Gartzke, W. (1974). Angew. Chem. 86, 667-669.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-101 and 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
McDermott, G. A., Dorries, A. M. \& Mayr, A. (1987). Organometallics, 6, 925-931.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England and Louvain, Belgium.
Motherwell, W. D. S. (1976). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Neugebauer, D., Fischer, E. O., Dao, N. Q. \& Schubert, U. (1978). J. Organomet. Chem. 153, C41-C44.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England. Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1990). C46, 584-587

Structure of 2-Adamantylammonium Trichloro(ethylamine)platinate(II)

By Fernande D. Rochon and Robert Melanson
Département de Chimie, Université du Québec à Montréal, CP 8888, succ.A, Montréal, Québec, Canada H3C 3P8

and Monique Doyon and Ian S. Butler
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6
(Received 26 April 1989; accepted 19 July 1989)

Abstract

Adamantylammonium trichloro(ethylamine) platinate(II), $\left[\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}\right]\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}\right)\right], M_{r}=$ 498.79, monoclinic, $P 2_{1} / n$, with $a=12.401$ (10), $b=$ 6.859 (15), $c=20.199$ (15) $\AA, \quad \beta=100.72$ (6$)^{\circ}, \quad V=$ 1688 (2) $\AA^{3}, Z=4, D_{x}=1.962 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71069 \AA, \quad \mu=8.86 \mathrm{~mm}^{-1}, \quad F(000)=960, \quad T=$ * $295 \mathrm{~K}, R=0.060$ for 1801 unique observed reflections. Pt has square-planar coordination with bond distances $\mathrm{Pt}-\mathrm{Cl}=2.281$ (4), $2 \cdot 278$ (4), $2 \cdot 301$ (4) \AA and $\mathrm{Pt}-\mathrm{N}=2.03$ (1) \AA. The $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right) \mathrm{Cl}_{3}\right]^{-}$ anion is normal but the C atoms in the adamantane ring show very high thermal motion. The crystal structure is stabilized by hydrogen bonding between the amine groups and the chloro ligands. The $\mathrm{N} \cdots \mathrm{Cl}$ distances range from $3 \cdot 12$ (2) to $3 \cdot 34$ (1) \AA.

Introduction. The cage molecule 1-adamantanamine $\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NH}_{2}\right)$ has been the subject of some attention lately, chiefly because of its antiviral (Hay, Wolstenholme, Shehel \& Smith, 1985; Widell, Hansson, Oeberg \& Nordenfelt, 1986; Fletcher, Hirschfield \& Forbes, 1965) and antitumor activity (Ho, Hakala \& Zakrsewski, 1972). Moreover, platinum(II) complexes containing the related 1,2-adamantanediamine ligand (Shionogi \& Co. Ltd, 1983) apparently possess antitumor activity comparable to that of the commercially licensed drug cisplatin, cis $-\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$ (Rosenberg, van Camp, Trosko \& Mansour, 1969). A convenient synthetic route to mixed-amine platinum(II) complexes of the type cis- $\operatorname{Pt}(L)\left(L^{\prime}\right) \mathrm{Cl}_{2}$ ($L, L^{\prime}=$ methylamine, ethylamine, cyclobutylamine, cyclopentylamine etc.) has been developed recently and we felt that it would be worthwhile attempting to synthesize similar complexes containing various adamantanamine ligands. It is our ultimate hope that such synthetic combina-
tions might result in compounds with enhanced antitumor activity and reduced toxicity.

Reaction of $\mathrm{K}\left[\mathrm{Pt}\left(\mathrm{EtNH}_{2}\right) \mathrm{Cl}_{3}\right]$ with 2-adamantanamine (2 -adam) does apparently yield the mixedamine complex $\left[\mathrm{Pt}\left(\mathrm{EtNH}_{2}\right)(2\right.$-adam $\left.) \mathrm{Cl}_{2}\right]$ but, upon treatment with dilute HCl during the work-up of the product, yellow crystals of the [2-adamH] ${ }^{+}$.$\left[\mathrm{Pt}\left(\mathrm{EtNH}_{2}\right) \mathrm{Cl}_{3}\right]^{-}$salt are also produced. This complex is probably the result of displacement of the coordinated adamantanamine ligand by Cl^{-}and subsequent quarternization of the amine group. We have now characterized the ionic compound by X-ray diffraction and report the results here.

The crystal structure was also of interest to us in view of our ongoing work on order-disorder phase transitions in organic molecular crystals, including substituted adamantane derivatives (BélangerGariépy, Brisse, Harvey, Butler \& Gilson, 1987, 1990; Harvey, Gilson \& Butler, 1987). The roomtemperature phases in such 'plastic crystalline' materials are usually disordered and the phase transitions take place at low temperatures or under high external pressures. The transitions are exothermic and consequently the materials are beginning to be exploited in various passive heat-storage systems. In the case of our complex, we anticipated that the adamantylammonium ion might be disordered at room temperature.

Experimental. 1 mmol of $\mathrm{K}\left[\mathrm{Pt}\left(\mathrm{EtNH}_{2}\right) \mathrm{Cl}_{3}\right]$, synthesized by the method already reported (Rochon, Melanson \& Doyon, 1987) and $1 \cdot 1 \mathrm{mmol}$ of 2 adamantanamine were stirred together in a minimum quantity of water for 90 min . Then $0 \cdot 1 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$ was added to the solution and the mixture was stirred for a further 10 min . The resulting yellow

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52399 (31 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

